益菌素

益菌素包括不可消化或能部分消化的醣分,能促進結腸益生菌的活動及生長[1]。母乳中含有不同類型的益菌素,稱為人乳寡糖(oligosaccharides)[2],[3],[4]

β-葡聚醣

免疫細胞受體能識別β葡聚醣聚合物,包括酵母β葡聚醣[5]。β葡聚醣與免疫細胞受體的結合,能增強免疫細胞的功能,有助清除體內微生物[6],[7],[8],[9]。先天免疫反應為防禦疾病第一道防線,能通過酵母β葡聚醣的刺激,保護人體免受病原體的入侵[10]

膽鹼

膽鹼是人體必需的營養素之一,具有多種功用,是製造膽鹼磷脂(phosphatidylcholine)及神經鞘磷脂(sphingomyelin)的先質,而膽鹼磷脂及神經鞘磷脂正是構成人體所有細胞細胞膜的主要成分,包括神經元、神經膠質細胞。膽鹼同時也是神經遞質、發育生長因子乙酰膽鹼(acetylcholine)及甲基供體甜菜鹼(betaine)的先質[11]

鐵質

鐵質是人類必需的微量元素。很多人都知道它是構成血紅蛋白 (haemoglobin) 的重要元素,為身體運送氧氣[12],不過它還是許多生物過程中不能缺少的成分[13],包括幫助大腦發展,建立認知能力。

神經元髓鞘的形成、腦能量的運用、神經遞質如血清素(serotonin)、去甲腎上腺素(norepinephrine)及多巴胺(dopamine)的製造都需要鐵質[14],[18]

鋅是另一種人體必需的微量元素。兒童許多重要的生長及發展過程都需要鋅[15],特別是中樞神經系統的發展及運作。

許多蛋白質包括酶、轉錄因子 (transcription factors) ,都需要鋅才能正常運作。它亦是結構蛋白的一部分,參與神經遞質的生產及功能[12]

鋅有助製造神經細胞及其移動,並幫助突觸形成[16],[17],[18],[19]

碘是人體必需的營養素,它是組成甲狀腺激素的一個重要成分[20]。這些激素控制人體內許多生物過程,包括生長、生殖功能。中樞神經系統的發展亦需要碘,因碘有助製造以及遷移神經細胞,並幫助建立突觸及髓鞘[21]

延伸閱讀

 


[1] Roberfroid, M. 2007. Prebiotics: the concept revisited. J Nutr 137(3 Suppl 2):830S-837S.
[2] Harmsen, H. J., A. C. Wildeboer-Veloo, G. C. Raangs, A. A. Wagendorp, N. Klijn, J. G. Bindels, and G. W. Welling. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30(1):61-67.
[3] Bode, L. 2006. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr 136(8):2127-2130.
[4] Penders, J., C. Thijs, C. Vink, F. F. Stelma, B. Snijders, I. Kummeling, P. A. van den Brandt, and E. E. Stobberingh. 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118(2):511-521.
[5] Rice, P. J., J. L. Kelley, G. Kogan, H. E. Ensley, J. H. Kalbfleisch, I. W. Browder, and D. L. Williams. 2002. Human monocyte scavenger receptors are pattern recognition receptors for (1-- >3)-beta-D-glucans. J Leukoc Biol 72(1):140-146.
[6] Liang, J., D. Melican, L. Cafro, G. Palace, L. Fisette, R. Armstrong, and M. L. Patchen. 1998. Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int J Immunopharmacol 20(11):595-614.
[7] Brown, G., Gordon, S. 2003. Fungal beta-glucans and mammalian immunity. Immunity 19(3):311-315.
[8] LeBlanc, B. W., J. E. Albina, and J. S. Reichner. 2006. The effect of PGG-beta-glucan on neutrophil chemotaxis in vivo. J Leukoc Biol 79(4):667-675.
[9] Volman, J. J., J. D. Ramakers, and J. Plat. 2008. Dietary modulation of immune function by beta-glucans. Physiol Behav 94(2):276-284.
[10] Ganner, A. and G. Schatzmayr. 2012. Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system. Appl Microbiol Biotechnol 95(2):289-297.
[11] Zeisel, S. H. and J. K. Blusztajn. 1994. Choline and human nutrition. Annu Rev Nutr 14:269-296.
[12] Prado, E. L. and K. G. Dewey. 2014. Nutrition and brain development in early life. Nutr Rev 72(4):267-284.
[13] Prado, E. L. and K. G. Dewey. 2014. Nutrition and brain development in early life. Nutr Rev 72(4):267-284.
[14] Bryan, J., S. Osendarp, D. Hughes, E. Calvaresi, K. Baghurst, and J. W. van Klinken. 2004. Nutrients for cognitive development in school-aged children. Nutr Rev 62(8):295-306.
[15] Salgueiro, M. J., M. B. Zubillaga, A. E. Lysionek, R. A. Caro, R. Weill, and J. R. Boccio. 2002. The role of zinc in the growth and development of children. Nutrition 18(6):510-519.
[16] Colvin, R. A., N. Davis, R. W. Nipper, and P. A. Carter. 2000. Zinc transport in the brain: routes of zinc influx and efflux in neurons. J Nutr 130(5S Suppl):1484S-1487S.
[17] Frederickson, C. J., S. W. Suh, D. Silva, and R. B. Thompson. 2000. Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130(5S Suppl):1471S-1483S.
[18] Bhatnagar, S. and S. Taneja. 2001. Zinc and cognitive development. Br J Nutr 85 Suppl 2:S139- 145.
[19] Levenson, C. W. and D. Morris. 2011. Zinc and neurogenesis: making new neurons from development to adulthood. Adv Nutr 2(2):96-100.
[20] Rohner, F., M. Zimmermann, P. Jooste, C. Pandav, K. Caldwell, R. Raghavan, and D. J. Raiten. 2014. Biomarkers of nutrition for development--iodine review. J Nutr 144(8):1322S-1342S.
[21] Prado, E. L. and K. G. Dewey. 2014. Nutrition and brain development in early life. Nutr Rev 72(4):267-284.