更多有關母乳的好處

母乳不僅提供營養,還有各式各樣的成分,對嬰兒的生存及健康極為重要[1]

生物活性成分及其來源

生物活性成分是食物中影響人類生物過程的物質,能對身體機能及健康構成影響。

生長因子

母乳中含有無數的生長因子,對腸道、血管、神經系統、內分泌系統有廣泛的影響。

腸道發育與修復:表皮生長因子

在羊水與母乳中都可找到表皮生長因子[2],[3],[4]。生長因子對腸道內壁的形成及修復有舉足輕重的作用。

腸道神經系統的生長及發育:神經生長因子

新生兒腸道的神經系統尚未成熟,需要腦源性神經營養因子(BDNF)及膠質細胞源性神經營養因子(GDNF)助其發育[5]。 BDNF能增強腸道蠕動,對腸道弱的早產嬰兒更為重要[6]。沒有GDNF的老鼠,腸道神經系統的神經細胞明顯較少[7]

組織生長:類胰島素生長因子超級家族

在人類母乳中,不僅可找到類胰島素生長因子(IGF-I和IGF-II),還有類胰島素生長因子的結合蛋白、IGF-特定蛋白酶[8],[9],[10]。吸收了人類IGF-Ⅰ的老鼠在進行手術或全靜脈營養療法期間,腸道損傷減少而組織生長增多[11],[12]。 IGF-Ⅰ或有助受到氧化壓力而受損的腸道細胞繼續存活[13]

調節血管發育:血管內皮生長因子(VEGF

早產嬰兒視網膜病變(ROP)被認為是因為嬰兒肺部發育未成熟,需使用輔助供氧,加上VEGF的負面調控,影響了視網膜血管的發育[14],[15]。換言之,透過調節血管發育,母乳裡的VEGF可能有助減少ROP的情況。

腸道發展預防貧血:紅血球生成素(Epo

母乳中含有大量紅血球生成素(Epo ),它是負責增加紅血球的主要荷爾蒙 / 激素。 Epo也對收緊腸道接點起重要作用[16]。有證據顯示,Epo可以幫助防止孕婦把人類免疫缺陷病毒(愛滋病毒HIV)[17]傳染給嬰兒,並可能有預防壞死性小腸結腸炎的功用[16],[18]

預防感染:後天與先天因素

嬰兒的免疫系統未發展成熟,得依靠從母親而來的抗體對抗病原。腸道的免疫細胞會接收母乳中的sIgA - 抗原複合物[19],以識別抗原,令腸道環境保持健康(沒有發炎)的狀態[20]

有一組稱為防禦素的先天性多功能蛋白質,亦能有力對抗感染。這些蛋白質的含量通常在初乳中最為豐富,之後就會逐步減少。防禦素中其中一種含量最高的是乳鐵蛋白:一種與鐵結合的蛋白質,是運鐵蛋白家族的成員[21],[22],能有效對抗多種細菌、病毒、真菌的感染[23],[24],[25],[26],[27]

乳凝集素(lactadherin)是另一種蛋白質,不會被胃液分解[28],可預防新生兒感染輪狀病毒[29]。一旦發炎,它能促進腸道細胞癒合[30],[31],也能增強腸道免疫細胞中的耐受性[32],[33],是維持腸道健康的重要一員。

另一種多功能蛋白-膽鹽激活脂肪酶(BSSL)[34]-能分解母乳中的脂肪,將其轉化為嬰兒生長發育的能量。母乳中的BSSL還可保護嬰兒免受病毒感染。

能幫助抵禦感染的其他母乳成分包括粘蛋白(mucins),它可以對抗愛滋病毒、輪狀病毒、沙門氏菌感染[35],[36]

促進有益微生物的生長:低聚醣

人乳寡糖(HMOS)由3至32個糖單元組成,與其他哺乳動物的有很大分別[37],[38]。雖然對嬰兒來說並無營養價值,但在人乳中卻與總蛋白質的含量同樣豐富。人乳寡糖的角色為益生劑,協助培育人體內的有益生物(益生菌)。

 


[1] Schrezenmeir J, Korhonen H, Williams C, et al. Foreword. Br J Nutr 2000;84(S1):1.
[2] Hirai C, Ichiba H, Saito M, et al. Trophic effect of multiple growth factors in amniotic fluid or human milk on cultured human fetal small intestinal cells. J Pediatr Gastroenterol Nutr 2002;34:524–8.
[3] Chailler P, Menard D. Ontogeny of EGF receptors in the human gut. Front Biosci 1999;4:87–101.
[4]Wagner CL, Taylor SN, Johnson D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin Rev Allergy Immunol 2008;34: 191–204.
[5]Rodrigues D, Li A, Nair D, et al. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol Motil 2011;23:e44–56.
[6]Boesmans W, Gomes P, Janssens J, et al. Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut 2008;57:314–22.
[7]Sa´nchez M, Silos-Santiago I, Frise´n J, et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996;382(6586):70–3.
[8]Blum JW, Baumrucker CR. Colostral and milk insulin-like growth factors and related substances: mammary gland and neonatal (intestinal and systemic) targets. Domest Anim Endocrinol 2002;23:101–10.
[9]Burrin DG. Is milk-borne insulin-like growth factor-I essential for neonatal development? J Nutr 1997;127:975S–9S.
[10]Philipps AF, Kling PJ, Grille JG, et al. Intestinal transport of insulin-like growth factor-I (IGF-I) in the suckling rat. J Pediatr Gastroenterol Nutr 2002;35:539–44.
[11]Peterson CA, Gillingham MB, Mohapatra NK, et al. Enterotrophic effect of insulinlike growth factor-I but not growth hormone and localized expression of insulinlike growth factor-I, insulin-like growth factor binding protein-3 and -5 mRNAs in jejunum of parenterally fed rats. JPEN J Parenter Eternal Nutr 2000;24(5):288–95.
[12]Murali SG, Nelson DW, Draxler AK, et al. Insulin-like growth factor-I (IGF-I) attenuates jejunal atrophy in association with increased expression of IGF-I binding protein-5 in parenterally fed mice. J Nutr 2005;135(11):2553–9.
[13]Elmlinger MW, Hochhaus F, Loui A, et al. Insulin-like growth factors and binding proteins in early milk from mothers of preterm and term infants. Horm Res 2007; 68:124–31.
[14]Reynolds JD. The management of retinopathy of prematurity. Paediatr Drugs 2001;3(4):263–72.
[15]DiBiasie A. Evidence-based review of retinopathy of prematurity prevention in VLBW and ELBW infants. Neonatal Netw 2006;25(6):393–403.
[16]Shiou SR, Yu Y, Chen S, et al. Erythropoietin protects intestinal epithelial barrier function and lowers the incidence of experimental neonatal necrotizing enterocolitis. J Biol Chem 2011;286(14):12123–32.
[17]Arsenault JE, Webb AL, Koulinska IN, et al. Association between breast milk erythropoietin and reduced risk of mother-to-child transmission of HIV. J Infect Dis 2010;202(3):370–3.
[18]Claud EC, Savidge T, Walker WA. Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr Res 2003;53:419–25.
[19]Brandtzaeg P. The mucosal immune system and its integration with the mammary glands. J Pediatr 2010;156(Suppl 2):S8–15.
[20]Kadaoui KA, Corthe´sy B. Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer’s patches with restriction to mucosal compartment. J Immunol 2007;179:7751–7.
[21]Velona T, Abbiati L, Beretta B, et al. Protein profiles in breast milk from mothers delivering term and preterm babies. Pediatr Res 1999;45(5):658–63.
[22]Adamkin DH. Mother’s milk, feeding strategies, and lactoferrin to prevent necrotizing enterocolitis. JPEN J Parenter Enteral Nutr 2012;36:25S–9S.
[23]Beljaars L, van der Strate BW, Bakker HI, et al. Inhibition of cytomegalovirus infection by lactoferrin in vitro and in vivo. Antiviral Res 2004;63(3):197–208.
[24]Kuipers ME, de Vries HG, Eikelboom MC, et al. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob Agents Chemother 1999;43(11):2635–41.
[25]Leitch EC, Willcox MD. Lactoferrin increases the susceptibility of S. epidermidis biofilms to lysozyme and vancomycin. Curr Eye Res 1999;19(1):12–9.
[26]Manzoni P, Rinaldi M, Cattani S, et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA 2009;302(13):1421–8.
[27]Sherman MP, Bennett SH, Hwang FF, et al. Neonatal small bowel epithelia: enhancing anti-bacterial defense with lactoferrin and Lactobacillus GG. Biometals 2004;17(3):285–9.
[28]Peterson J, Hamosh M, Scallan C, et al. Milk fat globule glycoproteins in human milk and in gastric aspirates of mother’s milk-fed preterm infants. Pediatr Res 1998;44(4):499–506.
[29]Newburg D, Peterson J, Ruiz-Palacios G, et al. Role of human-milk lactadherin in protection against symptomatic rotavirus infection. Lancet 1998;351(9110):1160–4.
[30]Kusunoki R, Ishihara S, Aziz M, et al. Roles of milk fat globule-epidermal growth factor 8 in intestinal inflammation. Digestion 2012;85:103–7.
[31]Chogle A, Bu H-F, Wang X, et al. Milk fat globule-EGF factor 8 is a critical protein for healing of dextran sodium sulfate-induced acute colitis in mice. Mol Med 2011;17(5):502–7.
[32]Aziz M, Jacob A, Matsuda A, et al. Review: milk fat globule-EGF factor 8 expression, function and plausible signal transduction in resolving inflammation. Apoptosis 2011;16:1077–86.
[33]Baghdadi M, Chiba S, Yamashina T, et al. MFG-E8 regulates the immunogenic potential of dendritic cells primed with necrotic cell-mediated inflammatory signals. PLoS One 2012;7(6):e39607.
[34]Landberg E, Huang Y, Stromqvist M, et al. Changes in glycosylation of human bile-salt-stimulated lipase during lactation. Arch Biochem Biophys 2000;377(2): 246–54.
[35]Saeland E, de Jong MA, Nabatov AA, et al. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells. Mol Immunol 2009;46:2309–16.
[36]Yolken RH, Peterson JA, Vonderfecht SL, et al. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J Clin Invest 1992; 90:1984–7.
[37]Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 2005;25:37–58.
[38]Morrow AL, Ruiz-Palacios GM, Jiang X, et al. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr 2005;135(5):1304–7.